
© 2019 JETIR December 2019, Volume 6, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1912176 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1329

Artificial Intelligence in Software Test

Automation: A Systematic Literature Review

Dhaya Sindhu Battina

Sr. Data Engineer & Department of Information Technology

CA, USA

Abstract— The main aim of this paper was to review how

artificial intelligence works in software test automation.

When it comes to software engineering, artificial

intelligence (AI) has had a significant influence, and

software testing is no exception. With artificial intelligence

(AI), the goal of software test automation may be closer

than ever before. To some extent, the paradigm has

changed during the previous two decades [1]. Everything

about the testing process has been a positive experience,

starting with manual testing and progressing to automated

testing, where Selenium is acknowledged to be one of the

best test automation tools. As a result, in today's high-speed

IT landscape software testing must come up with fresh

testing approaches that are based on solid research. The

emergence of AI-based testing has been very beneficial for

this aim [1]. A computer's ability to learn without human

involvement may be fully simulated by AI algorithms and

machine learning (ML). While AI and ML entail the

construction of distinct and unique algorithms to access

data and learn from it by identifying patterns to make

conclusions, these predictions are intended to be employed

in software testing to their full potential [1].

Keywords: Artificial intelligence, automation, Software

test automation, software engineering, AI systems

I. INTRODUCTION

The significance of technology in our professional and

personal life constantly changes at a breakneck rate, and we

must keep up with it. The digital revolution is now affecting

every part of life, from household appliances to virtual

reality headsets. To an international audience, companies

create applications utilized by hundreds of thousands or

perhaps million worldwide [2]. The agile quick delivery

methodology is used by the vast majority of those

companies, resulting in fresh launches every two weeks on

average. These programs must be thoroughly tested before

each launch to provide the best possible experience for the

end-user. Manual testing cannot keep up at that rate. Every

company, no matter how big or little, views software and

application testing as a critical phase in the development

cycle. There are several important components of a

program that are validated by this process [2]. To be sure,

manual testing gets more inefficient, time-consuming, and

expensive as software expands and new functionality is

introduced. Test automation, which automates critical

processes & operations in detail to boost the quality &

effectiveness of human testers, is increasingly being added

to prevent such concerns.

In software development, the usage of artificial

intelligence (AI) is still in its development, and the amount

of autonomy is still considerably lower than observed in

more mature fields of work including such self-driving

systems or voice-assisted control, but it is still moving

towards autonomous testing. In software testing tools, AI is

being utilized to make the software development lifecycle

simpler for the team working on the product. In software

development and testing, artificial intelligence (AI) may be

used to automate and minimize the number of dull and

laborious operations that must be performed manually

[2,3]. We must make certain that the test is always

performed with an empty cart before adding any products.

This helps to avoid distorted findings and adheres to sound

automation principles. "Maintenance" is the largest issue

with test automation. As software complexity rises, we

must write more tests to keep up. It's because of this that

we're swamped with testing and maintenance. It takes a lot

of time and effort to debug and resolve tests that fail.

Recent research shows that maintaining tests takes roughly

40% of the time spent by testers [4].

II. PROBLEM STATEMENT

The main problem that this paper will address is to

review artificial intelligence in software test automation.

Automated software testing has a major difficulty, which

will be examined in detail in this paper. As a result of a lack

of intelligence and premature human involvement, today's

technologies are forced to cope with ineffective test runs

[5]. As a result, there will be no way to identify test

mistakes, code flaws, or other important obstacles in the

testing environment. When it comes to testing, artificial

intelligence makes it possible for users to move over their

current challenges and improve their productivity. Instead

of prioritizing the feature's testing, most teams just assign

that task to whoever happens to be available at the moment

[5]. To test software effectively, we need testers that are

inquisitive about the product and have a critical

perspective. These testers should question the product and

assess it objectively.

III. LITERATURE REVIEW

A. An Overview of Artificial Intelligence for

Software Testing

Software testing is a critical step in ensuring the

application's customers are satisfied. Test automation is

carried out in a controlled manner in which an application

is monitored under specified situations, allowing testers to

gauge the threshold and potential dangers associated with

the software's deployment [6]. In software testing, artificial

intelligence (AI) aids in the prevention of application fail-

overs that might be costly to both the program and the

company in the long run. Tests using Artificial Intelligence

are becoming more important as AI becomes increasingly

prevalent in our daily lives. Even with autonomous driving

automobiles, there is still the risk of human lives being

endangered if the car's intelligence isn't working correctly

and it makes the incorrect judgment or responds too slowly

[6]. An introduction to the advantages and requirements of

http://www.jetir.org/
http://www.jetir.org/

© 2019 JETIR December 2019, Volume 6, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1912176 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1330

artificial intelligence in software testing will be provided in

this article. Robotic testing is in charge of carrying out

routine activities more accurately and quickly.

Figure I: Framework for software test automation

B. How is Artificial Intelligence Shaping the

Dynamics of Software Testing?

We're leaning more and more on AI to make the

application more secure (AI). We may be handing over

much of the testing to AI as it becomes more automated.

So, instead of human-driven testing, we're heading towards

a situation where robots execute test scripts in place of

people [6]. Machine learning and self-improvement will

need some human input, but it will be minimal. Hence, the

creation of a group focused on the Grand Dream of Testing

has become critical, where everything is automated without

human interaction and technologies provide superior

testing than existing application test teams [6,7]. Consider

going one step further and imagining an environment where

software can test, diagnose, and cure itself on its own.

C. Artificial Intelligence-enhanced Software tools

Model-Inference driven testing (MINTest) is used for

software test automation and may be used to generate test

cases using the C4.5 method. It describes itself as a

framework for unit and integration testing on its website

[7]. It is implemented for the Linux operating system (OS).

Using AutoBlackTest (Automated Black-Box Testing), the

supervised learning method known as QLearning is

implemented. The tool's primary purpose is to generate

GUI test cases automatically. GitHub says it's only

compatible with IBM Rational Functional Tester running

on Windows [7,8]. It's impossible to determine if the

program works with Windows OS versions higher than 8.1

and JRE based on the evidence currently accessible.

AimDroid is a GUI testing platform for Android apps

created by Google. Exploration of the app's activity is used

for automated testing. Using the program, tests may be run

and results reported to the user. Fusing was employed as an

AI enhancement [8]. One of AimDroid's drawbacks and

concerns is that the smartphone must be rooted: the user of

the device is given root access.

To fix GUI test breakage, Vista makes use of computer

vision technology from the past. A successful test is

recorded in the web-based GUI. It is possible for Vista to

restore test scripts that fail on a subsequent version of an

application by comparing their current status with what was

documented before. In specific Selenium scripts, the

program presently supports repairing Java scripts. To write

GUI tests, you may use the Sikuli Test, an algorithm that is

efficient that lets you use the visual notation (such as an

image of an element to help identify it on the screen) while

utilizing visual notation. The program makes automated

testing easy for the users by using computer vision. Sikuli

Test was created to run on any operating system. Because

of this, it may be used to test personal computers, online,

and mobile (Android) apps [8]. The tool seems to be

actively being developed as SikuliX at the moment.

Testilizer can generate test scenarios for software

applications leveraging SVM from Selenium scripts that

are already in existence. It starts with Selenium tests and

may create additional test cases for application states that

haven't been reached yet. It's necessary to have Crawljax

installed before running any tests on that system [9].

Automating Android GUI tests is made easier using

SwiftHand's GUI test automation features. This approach is

used to explore the model of the graphical user interface

(GUI) of the program under test [10]. SwiftHand then

makes use of it to produce the necessary inputs for

inspecting the software's previously unvisited levels.

SwiftHand is compatible with Linux and Mac. The tool's

GitHub source has comprehensive installation and uses

instructions [11].

D. The Importance of Artificial Intelligence in

the Software Testing Process

In the field of software development, software testing

is a critical step in the process. Nevertheless, due to the lack

of resources and time, programmers are often unable to

perform comprehensive testing (a test technique in which

all conceivable data configurations are tested) on

applications. To automate recurring patterns, we want a

system capable of intelligently recognizing areas that will

be developed and more concentrated. The greatest time,

money, and resources go into software testing. In addition,

developers are looking for speedier releases, and Artificial

Intelligence is a good solution [12]. A human tester adds

unnecessary expenses and energy since 80 percent of

testing consists of repeating tests that the software already

has. Artificial Intelligence may assist automate these

procedures more effectively. To discover application

difficulties, it would be a good practice to use both

cognitive abilities and AI automation to create unique and

novel software systems. Repetitive labor should be

automated using Artificial Intelligence, such that just 80%

of testing processes need human creativity and thinking

[12].

When it comes to creating smarter and more efficient

applications for end-users, artificial intelligence algorithms

may be a huge assist in the testing sector. However,

understanding how Artificial Intelligence (AI) may be used

wonderfully is critical. Artificial intelligence algorithms

that access automation in the same way as an actual human

would. The next step is to identify the parts of the process

where Artificial Intelligence may improve performance,

and then use a machine learning or learning techniques

algorithm to do so [13]. An algorithm that encourages the

process, aids testers in finding the most problems in the

shortest time, and increases the reliability and accuracy of

the application is a plus [13]. Developers may then utilize

the results to iterate on the product and learn from their

mistakes.

http://www.jetir.org/
http://www.jetir.org/

© 2019 JETIR December 2019, Volume 6, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1912176 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1331

E. The advantages of using artificial intelligence

in software testing

Fig i: The benefits of integrating Artificial Intelligence in

Software Testing

i. Enhanced Precision

When doing frequent manual software testing, even

the most seasoned tester is prone to make errors. To aid

with this, automated software tests conduct the same or

repeated tasks properly every time, ensuring that accurate

findings are recorded every time. The time saved by

automating manual testing allows the testers to work on

more complex features and new automated tests.

ii. Beyond Manual Testing's Restrictions

It is almost hard for even the largest software

development/quality assurance organizations to conduct

controlled web application testing involving 1000+ users.

One may mimic tens, hundreds, or thousands of virtual

users using automated testing, and these people can then be

combined with a web-based application, program, or

network [13].

iii. Benefits for developers and testers.

The developers can detect issues faster by using shared

automated tests before submitting them to the QA team.

Tests may be performed periodically anytime the source

code is modified, checked in, and failures can be reported

to the team or the developer. These kinds of features

provide developers more confidence and save them time at

the same time.

iv. Increasing the total number of tests

conducted

It's possible to do more tests with more depth and

breadth thanks to automated software testing. Automated

software testing may examine the contents of memory and

files, as well as internal program modes and datasets, to

evaluate whether or not the software is working as it should

under certain conditions. Overall, software test automation

allows for the execution of over 1000 distinct test cases in

a single test run, providing coverage that is not feasible

with human software testing [14].

v. Time and money saved equates to a quicker

time to market

Manually performing such tests may be time- and

money-consuming when software tests are redone after

every modification in the source code [15]. However, once

they've been written, automated tests may be reused

indefinitely at no extra charge and a significantly faster

rate. Software testing may be done in a matter of hours

rather than days, saving time and money.

IV. FUTURE IN THE U.S

The automation of software testing is advancing

rapidly in the United States. The software industry's long-

term prospects. The usage of tools to assist with testing will

be a part of test automation. According to an InfoWorld

study, 88% of firms automate 50% or more of their tests,

which results in quicker testing cycles, 71% higher test

coverage, and 68% better problem detection. Many

American organizations are aiming to expand their

automated testing portfolios as Agile and DevOps adoption

increases [15,16]. Test automation has grown by 85% in the

last two years, according to app developer Magazine. Open

Source software technologies freely accessible on the

market today have contributed to this increase. As a

decentralized architecture for resilient and flexible

cybersecurity management, cybersecurity mesh is a term to

remember. As a result of cybersecurity mesh, the perimeter

may be refocused on securing people or things rather than

just their physical location. System scalability and

adaptability will be determined via this kind of testing. The

goal of artificial intelligence (AI) in software testing is to

make testing more intelligent and efficient. The use of

artificial intelligence (AI) and machine learning (ML) helps

automate and enhance testing [16]. Software testing using

artificial intelligence (AI) saves time and allows teams to

work on more difficult tasks, such as developing inventive

new features. The phrase "Mobile First" and providing the

user with a mobile platform via mobile internet, hybrid

mobile apps were popular throughout the world around 5

years ago. Artificial intelligence (AI) is the newest fad (AI).

In self-driving vehicles, voice recognition, machine vision,

healthcare, finance, and now test automation, hardly a day

goes by without someone or an article announcing some

form of AI progress [17].

V. ECONOMIC BENEFITS

As AI advance at a fast rate in the US, the advantages

to the economy will only grow. To address many technical

issues in the fields of healthcare, driverless vehicles, search

engines, predictive modeling, and a lot more testing,

companies like Apple have begun spending more on AI. It

has an impact on all businesses, large and small. By 2030,

AI is anticipated to boost the world economy by a

whopping $15.7 trillion. The application of artificial

intelligence (AI) in software development will be one of the

fastest-rising technologies in the industry in the next years.

Quality assurance will benefit from AI-based technologies

by automating manual work and speeding up sprints within

the SDLC [17,18]. Software quality assurance. One of the

main goals of the US software business is to reduce

software development costs while also enhancing the

quality of the software. Though computerized economies

are becoming more complicated, so is the underlying

software required to sustain them. Software applications

are now measured in terms of millions of lines of code

rather than tens of thousands of lines of code, as was

formerly the case. Concerns about software quality have

grown as software complexity has increased and the typical

market living standards of many software products have

decreased. To conduct a thorough investigation, two

industrial groups were chosen: automobile and aerospace

equipment makers, as well as banking and finance players

and associated digital communications equipment

producers.

VI. CONCLUSION

This study looked at how artificial intelligence may be

incorporated into the software testing process using test

automation. Overall, the purpose of this study was to

generate interest in artificial intelligence (AI) as a viable

tool for use in the software testing automation industry. A

Systematic Literature Review (SLR) was carried out to

achieve the objective. In the near future, even "Continuous

Testing" would be unable to keep up with the smaller

delivery cycle durations, increased technological

http://www.jetir.org/
http://www.jetir.org/

© 2019 JETIR December 2019, Volume 6, Issue 12 www.jetir.org (ISSN-2349-5162)

JETIR1912176 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1332

complexity, and growing rates of change. We are rapidly

nearing this point. For robots, the Internet of Things, and

other cutting-edge technologies, the testing evolution must

be carried out to ensure the efficiency necessary. While

working on the IoT and practically driving "self-driving"

automobiles, we need to learn how to work smarter, not

harder, to ensure quality in an age where software processes

an unthinkable number of data points in real-time.

Although artificial intelligence (AI) continues to advance,

it is clear that simulating the human brain is a difficult

undertaking. It's important to remember that applications

are used by people, and the technical improvements being

developed consider that. This helps to guarantee a high-

quality product.

REFERENCES

1. S. Amaricai and R. Constantinescu, "Designing a Software

Test Automation Framework", Informatica Economica, vol.

18, no. 12014, pp. 152-161, 2014.

2. D. Banerjee and K. Yu, "3D Face Authentication Software

Test Automation", IEEE Access, vol. 8, pp. 46546-46558,

2020.

3. L. Damm and L. Lundberg, "Results from introducing

component-level test automation and Test-Driven

Development", Journal of Systems and Software, vol. 79, no.

7, pp. 1001-1014, 2006.

4. C. Jordan, F. Maurer, S. Lowenberg and J. Provost,

"Framework for Flexible, Adaptive Support of Test

Management by Means of Software Agents", IEEE Robotics

and Automation Letters, vol. 4, no. 3, pp. 2754-2761, 2019.

5. J. Kasurinen, O. Taipale and K. Smolander, "Software Test

Automation in Practice: Empirical Observations", Advances in

Software Engineering, vol. 2010, pp. 1-18, 2010.

6. D. Kumar and K. Mishra, "The Impacts of Test Automation on

Software's Cost, Quality and Time to Market", Procedia

Computer Science, vol. 79, pp. 8-15, 2016.

7. C. Rankin, "The Software Testing Automation

Framework", IBM Systems Journal, vol. 41, no. 1, pp. 126-

139, 2002.

8. A. Bertolino, H. Foster, J. Jenny Li and H. Zhu, "Special

section on automation of software test", Journal of Systems

and Software, vol. 86, no. 8, p. 1977, 2013.

9. V. Garousi and F. Elberzhager, "Test Automation: Not Just for

Test Execution", IEEE Software, vol. 34, no. 2, pp. 90-96,

2017.

10. B. Green, "Software test automation", ACM SIGSOFT

Software Engineering Notes, vol. 25, no. 3, pp. 66-66, 2000.

11. J. Hollingum, "Reflex puts its software capabilities to the

test", Assembly Automation, vol. 7, no. 1, pp. 21-23, 1987.

12. D. Hutton, "Software Test Automation: Effective Use of Test

Execution Tools20005Mark Fewster and Dorothy Graham.

Software Test Automation: Effective Use of Test Execution

Tools. Reading, MA: Addison Wesley Longman 1999. 592

pp., ISBN: ISBN 0‐201‐33140‐3 $39.95 (£25

approx.)", Kybernetes, vol. 29, no. 3, pp. 392-398, 2000.

13. D. O'Shea, F. Ortin and K. Geary, "A virtualized test

automation framework: A DellEMC case study of test

automation practice", Software: Practice and Experience, vol.

49, no. 2, pp. 329-337, 2018.

14. J. Park and J. Choi, "Test Framework Development for

Software Reliability Test using Formal Method", International

Journal of Software Engineering and Its Applications, vol. 10,

no. 8, pp. 151-158, 2016.

15. M. Polo, P. Reales, M. Piattini and C. Ebert, "Test

Automation", IEEE Software, vol. 30, no. 1, pp. 84-89, 2013.

16. K. Wiklund, S. Eldh, D. Sundmark and K. Lundqvist,

"Impediments for software test automation: A systematic

literature review", Software Testing, Verification and

Reliability, vol. 27, no. 8, p. e1639, 2017.

17. S. Jan, A. Javed and M. Majeed, "Quality Category Matrix to

Ensure the Quality of Software Product", International

Journal of Computer and Communication Engineering, pp.

175-178, 2012.

18. B. Kitchenham, "Towards a constructive quality model. Part 1:

Software quality modelling, measurement and

prediction", Software Engineering Journal, vol. 2, no. 4, p.

105, 1987.

http://www.jetir.org/
http://www.jetir.org/

